Skip to main content

Advertisement

Log in

Active control of a passive bipedal walking robot

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

A passive bipedal walking robot can descend down a small slope without any exertion of external force and only by using the gravity force. By exerting a proper energy to a passive biped robot, its walking speed can be controlled and also it can be forced to walk on flat planes and ascending slopes. In this paper, the proper energy is applied to the robot in three different methods: applying a proper moment to the robot joints, applying a proper moment to the robot’s stance leg, and applying a proper movement to the robot’s upper body. It is found that the first method is not practical, but the second and third methods enhance the stability and speed regulation of the robot. Additionally, the robot can walk on flat planes, ascending or descending slopes. The controlling algorithm used in this paper is a nonlinear algorithm based on tracking of a given mechanical energy pass of a bipedal walking robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mochon S, McMahon TA (1980) Ballistic walking. J Biomech 13:49–57

    Article  MATH  Google Scholar 

  2. Mochon S, McMahon TA (1980) Ballistic walking: an improved model. Math Biosci 52:241–260

    Article  MathSciNet  MATH  Google Scholar 

  3. McGeer T (1990) Passive dynamic walking. Int J Robot Res 9(2):62–82

    Article  Google Scholar 

  4. Collins SH, Ruina A, Tedrake RL, Wisse M (2005) Efficient bipedal robots based on passive-dynamic walkers. Science 307:1082–1085

    Article  Google Scholar 

  5. Asano F (2012) Efficiency and optimality of two-period limit cycle walking. Adv Robot 26:155–176

    Article  Google Scholar 

  6. Garcia M, Chatterjee A, Ruina A, Coleman M (1998) The simplest walking model: stability, complexity, and scaling. ASME J Biomech Eng 120:281–288

    Article  Google Scholar 

  7. Goswami A, Thuilot B, Espiau B (1998) A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int J Robot Res 17:1282–1301

    Article  Google Scholar 

  8. Wisse M, Schwab AL, Vander Helm FCT (2004) Passive dynamic walking model with upper body. Robotica 22:681–688

    Article  Google Scholar 

  9. Borzova E, Hurmuzlu Y (2004) Passively walking five-link robot. Automatica 40:621–629

    Article  MathSciNet  MATH  Google Scholar 

  10. Li Q, Tang S, Yang XS (2013) New bifurcations in the simplest passive walking model. Chaos 23:043110

    Article  MathSciNet  MATH  Google Scholar 

  11. Li Q, Yang XS (2012) New walking dynamics in the simplest passive bipedal walking model. Appl Math Model 36:5262–5271

    Article  MathSciNet  MATH  Google Scholar 

  12. Gritli H, Khraief N, Belghith S (2012) Period-three route to chaos induced by a cyclic-fold bifurcation in passive dynamic walking of a compass-gait biped robot. Comm Nonlinear Sci Numer Simul 17:4356–4372

    Article  MathSciNet  Google Scholar 

  13. Afshar PN, Ren L (2012) Dynamic stability of passive bipedal walking on rough terrain: a preliminary simulation study. J Bion Eng 9:423–433

    Article  Google Scholar 

  14. Safa AT, Alasty A, Naraghi M (2015) A different switching surface stabilizing an existing unstable periodic gait: an analysis based on perturbation theory. Nonlinear Dyn 81:2127–2140

    Article  MathSciNet  MATH  Google Scholar 

  15. Chyou T, Liddell GF, Paulin MG (2011) An upper-body can improve the stability and efficiency of passive dynamic walking. J Theor Biol 285:126–135

    Article  MathSciNet  Google Scholar 

  16. An K, Chen Q (2013) A passive dynamic walking model based on knee-bend behaviour: stability and adaptability for walking down steep slopes. Int J Adv Robot Syst 10:365

    Article  Google Scholar 

  17. Jeon Y, Park YS, Park Y (2013) A study on stability of limit cycle walking model with feet: parameter study. Int J Adv Robot Syst 10:49

    Article  Google Scholar 

  18. Huang Y, Wang QN, Gao Y, Xie GM (2012) Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints. Acta Mech Sinica 28:1457–1465

    Article  MathSciNet  MATH  Google Scholar 

  19. Collins SH, Wisse M, Ruina A (2001) A three-dimensional passive dynamic walking robot with two legs and knees. Int J Robot Res 20:607–615

    Article  Google Scholar 

  20. Spong MW, Bhatia G (2003) Further results on control of the compass gait biped. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), pp 1933–1938

  21. Spong MW, Bullo F (2005) Controlled symmetries and passive walking. IEEE Trans Autom Control 50:1025–1031

    Article  MathSciNet  MATH  Google Scholar 

  22. Ames AD, Gregg RD (2007) Stably extending two-dimensional bipedal walking to three dimensions. In: Proceedings of American Control Conference, pp 2848–2854

  23. Gregg RD, Spong MW (2010) Reduction-based control of three-dimensional bipedal walking robots. Int J Robot Res 29:680–702

    Article  Google Scholar 

  24. Ohta H, Yamakita M, Furuta K (1999) From passive to active dynamic walking. In: Proceedings of IEEE Conference on Decision and Control, pp 3883–3885

  25. Spong MW (1999) Passivity based control of the compass gait biped. In: Proceedings of IFAC Triennial World Congress, pp 19–23

  26. Kuo AD (1999) Stabilization of lateral motion in passive dynamic walking. Int J Robot Res 18:917–930

    Article  Google Scholar 

  27. Suzuki S, Furuta K, Pan Y, Hatakeyama S (2001) Biped walking robot control with passive walker model by new VSC servo. In: Proceedings of American Control Conference, pp 107–112

  28. Pekarek D, Ames AD, Marsden JE (2007) Discrete mechanics and optimal control applied to the compass gait biped. In: Proceedings of IEEE conference on decision and control, pp 5376–5382

  29. Erez T, Smart WD (2007) Bipedal walking on rough terrain using manifold control. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007), pp 1539–1544

  30. Yazdi EA, Alasty A (2008) Stabilization of biped walking robot using the energy shaping method. J Comput Nonlinear Dyn 3:041013.1–041013.8

    Article  Google Scholar 

  31. Iida F, Tedrake R (2010) Minimalistic control of biped walking in rough terrain. Auton Robots 28:355–368

    Article  Google Scholar 

  32. Liu L, Tian Y (2012) Switch control between different speeds for a passive dynamic walker. Int J Adv Robot Syst 9:241

    Article  Google Scholar 

  33. Grizzle JW, Chevallereau C, Sinnet RW, Ames AD (2014) Models, feedback control, and open problems of 3D bipedal robotic walking. Automatica 50:1955–1988

    Article  MathSciNet  MATH  Google Scholar 

  34. Ames AD (2014) Human-inspired control of bipedal walking robots. IEEE T Autom Control 59:1115–1130

    Article  MathSciNet  MATH  Google Scholar 

  35. Cao Y, Suzuki S, Hoshino Y (2014) Uphill and level walking of a three-dimensional biped quasi-passive walking robot by torso control. Robotica. doi:10.1017/S0263574714001593

    Google Scholar 

  36. Thomson WT, Dahleh MD (1998) Theory of vibration with applications, 5th edn. Prentice Hall, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Ebrahimi or Mahdi Heydari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, A., Heydari, M. & Alasty, A. Active control of a passive bipedal walking robot. Int. J. Dynam. Control 5, 733–740 (2017). https://doi.org/10.1007/s40435-016-0225-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0225-2

Keywords

Navigation